Bayesian variable selection for the Cox regression model with missing covariates
نویسندگان
چکیده
منابع مشابه
Model selection for zero-inflated regression with missing covariates
Count data are widely existed in the fields of medical trials, public health, surveys and environmental studies. In analyzing count data, it is important to find outwhether the zeroinflation exists or not and how to select the most suitable model. However, the classic AIC criterion formodel selection is invalid when the observations aremissing. In this paper, we develop a new model selection cr...
متن کاملCox Regression for Current Status Data with Missing Covariates
Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are not yet investigated. Our study is partly motivated by analysis of fracture data from a cross-sectional study, where the ocurrence time of fracture was interval-censored and...
متن کاملPosterior Propriety and Computation for the Cox Regression Model with Applications to Missing Covariates
In this paper, we carry out an in-depth theoretical investigation for Bayesian inference for the Cox regression model (Cox, 1972, 1975). Specifically, we establish establish necessary and sufficient conditions for posterior propriety of the regression coefficients, β, in Cox’s partial likelihood, which can be obtained as the limiting marginal posterior distribution of β through the specificatio...
متن کاملA pseudo-Bayesian shrinkage approach to regression with missing covariates.
We consider the linear regression of outcome Y on regressors W and Z with some values of W missing, when our main interest is the effect of Z on Y, controlling for W. Three common approaches to regression with missing covariates are (i) complete-case analysis (CC), which discards the incomplete cases, and (ii) ignorable likelihood methods, which base inference on the likelihood based on the obs...
متن کاملBayesian Model Averaging for Generalized Linear Models with Missing Covariates
We address the problem of estimating generalized linear models (GLMs) when the outcome of interest is always observed, the values of some covariates are missing for some observations, but imputations are available to fill-in the missing values. Under certain conditions on the missing-data mechanism and the imputation model, this situation generates a trade-off between bias and precision in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lifetime Data Analysis
سال: 2008
ISSN: 1380-7870,1572-9249
DOI: 10.1007/s10985-008-9101-5